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ABSTRACT

Let a given set be endowed with a prefe rence preordering, and

consider the problem of finding a solution to the differential  inclusion

ic(t) e S(x( t ) )

which remains in the given set and evolves monotonically with respect

to the preordering . We give sufficient  conditions for the existence of

such a traj ectory, couched in terms of a notion of tangency developed by

Clarke . No smoothness or convexity is involved in the construction .

which uses techniques of Filippov .
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MONOTONE INVARIANT SOLUTIONS TO DIFFERENTIAL INCLUSIONS

Frank H. Clarke t and J. - P. Aubln~

1. Statement of the problem

Let X be a compact subset of R’~’, S a multifunction (set-valued

function) from X into Rn with non-empty compact values. We regard

X as the state set of a dynamical system and S(x) as the set of

feasible velocities of the system when its state is x. We introduce a

preordering 1
y ~ x~ (y is better than x) on X ( i . e . ,  a relation which

is both reflexive and transitive).

Let [0 , TJ be any finite interval ( T >  0). We say that an

absolutely continuous function x from [0 , T} Into Rr
~ is a monotone

invariant traj ectory for S starting at E X ’  if

i) E S(x(t)) for almost all t in [0 , T]

ii) x(0) = x0( 1. 1)
iii) x(t) E X for all t E [ 0, T}

lv) if t ~ s , x(t) is better than x(s)

Our main result which we state in this section , gives reasonable

suff ic ient  conditions implying the existence of at least one monotone

invariant  traj ectory. In § 2 we discuss a notion of tangency for arbitrary

t Department of Mathematics , University of British Columbia , Vancouver ,
B . C . ,  Canada V6T iW5.

~Mathematlques de la Decision , Universite de Paris IX , 75775  Pari s ,
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closed sets [ 5 ]  which is central in our results , while § 3 is devoted

to th e proof of the main theorem . We define the set

P(x) = {y E X such that y ) x}

of elements y better than x. The mul t i func t ion  P satisfies the

properties:

( i) Yx X, x P(x)

~1.2)
~ ii) Vx ~ X, vy E P(x) , P(y) C P(x)

(Co nversely, If P is a multifunction fro m X to X sat isfying ( 1. 2) ,

the relation y ~ x defined by y P(x) is a preordering on X . )  We

recall that P is said to be Lipschitz if and only if there exists L > 0

such that P(x) C P(y) + LHx  - y l i B , where B is the unit ball. We

recall also that S is upper (resp . lower) semicontinuous if for any

e > 0, there exists a neighborhood N~ (x) of x such that ,

Vy N (x) , S(y) C S(x) + LB (resp. S(x) C S(y) + cB)

We will define In the next section the tpngent cone T( P(x);x)

to the set P(x) at x.

Theore m 1. Let us assume thpt P satisfies ( 1.2 ) ,  that X is comp act ,

that the images S(x) P(x) ~re non-empty and compact and that

[ I) S is continuous

Ii)  P is Lipschltz.

Let us suppose also th&t

(1. 3) Yx c X, S(x) C T( P(x);x)
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Then, for any x0 ~ X, V
0 

S(x 0), 
~~~~~~~~ 

T > 0, there exists a monotone

invariant traiectory starting at x0 and satisfy ing

(.  dx) i) ~~~(0) = v~

‘1~ii) ~~ is regulated ( i . e . , Is a uniform limit of step functions)

Remark 1. 1. In [ 2 ] ,  the following was proved: if X, S(x) and P(x)

are non-empty, convex and compact , if S is upper sernicontinuous and

P is continuous , and if S(x) fl T( P(x);x) � • for all x ~ X, then

there exists a monotone invariant trajectory .

Remark 1. 2. II we neglect the monotonicity requirement (1. 1) ( iv) ,  ( i . e .

set P(x) = X for each x) a solution of (1. 1) (i) ,  ( i i) ,  (iii) is called an

invariant traj ectory . When S is a continuous function, existence of

invariant trajectories was obtained by Nagumo [12],  Crandall [7 },

Martin [ 10] ,  [11), Yorke [ is ] ,  Hartman [9 ] ;  for S a Lipschitz function ,

see Brezis [ 4 ] ,  Bony [ 3 ] ,  Redheffer [14]; for S a Lipschitz mult i—

function see Clarke [ S I .  Theorem I implies the existence of (at least)

one invariant trajectory when S is a continuous multi function; local

existence of the differential inclusion (1 . 1) ( 1) , (Ii) was prove d by

Filippov [ 8] .  We make use of the techniques Introduced in this paper.

See also Antoslewlcz-Celllna [1 ] ,  Olech [13] and the references of the

latter paper.
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2. Tangent Cones

We recall that any locally Li p schitz function f : R 1 —. R has a

g~neralized directional derivative , de fined in [ 5 ] ,  [ 6 ]  by

( 2 . 1)  f 0(x;v) lim sup[ f(y + Ov) - f (y) J / 0

0 0+

which is convex positively homogeneous and continuous with respect to v.

It coincides with (Vf(x) ,  v) if f is continuously differentiable and with

the derivative from the right if f is convex and continuous. By definition,

the generalized gradient Bf(x) of f at x is the set of p R
1 

such that

0 1
(p,v)  ~ f (x;v) for all v in R

It is a non-empty convex compact set whose support function is f0(x;).

Let X be a closed subset of R
1
. The distance function

y-. d( X;y) inf II~ - z i l , being a Lipschltz function , admits a
z€X

generalized directional derivative d0(X;y;v) and a generalized gradient

ad(X;y) at any point y. If y E X, we shall say that the normal cone

N(X;y) to X at y is the closed convex cone spanned by ad(X;y).

We de fine the tangent cone T(X;y) to X at y to be the (negative)

polar cone of N(X;y) . Thus

( 2 . 2 )  T(X;y) = {v R1 such that d0( X;y , v) < 0 )

If the interior m t  X of X Is non-empty and if y m t  X , then

T(X;y) = R 1
. When X is a closed convex set , or a smooth manifold ,

these definitions coincide with the usual ones (see [ s J ) .  We recall the

fol lowing characterization of the tangent cone (see [5 , p. 25 6 ]) .

-4—



Proposition 1. A vector v belong s to T(X;y) j .f~~ d only i

(2.  3) lim lim inf d(X;z + xv) /X = 0
zEX X— 0+
z— y

This implies obviously that

(2. 4) lim inf d(X;y + Xv)/X = 0
X—0 +

but this condition does not necessarily Imply that v E T(X;y) .

Remark 2.1. It is easy to show from the above (see [5 , Proposition 3.7])

that the tangent cone may be defined directly as follows: v belongs to

T(X;x) iff for every sequence {x) in X converging to x and every

sequence { x }  of  pos itive numbers converging to 0 , there exists

a sequence {v} converging to v such that X + X v  belongs to

X infInite~[y often.

Lemma I. For any x
0 

E X and v0 E R
1
, there exist neighborhoods

N(x 0) ~~ x0, M(v0) ~~ V
0 ~~~ , h(x0,v0) >0 such that

(2.  5) d(X;x + hv) / h < d 0(X;x 0 ;v0) + e

when x e N ( x
0

) ,  v M ( v
0) ~~~ 0 < h < h(x0, v0).

Proof. Let us set g(t) d(X;x + tv). Since g(0) = d(X;x) = 0 when

x c X, we can write

(2. 6) d(X;x ÷ hv)~~ = 
~ f  g ’(t)dt

[Indeed g, being a Lipschltz function of t, IS differentiable almost

everywhere]. But we have
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( 2 . 7 )  g ’( t ) <d °(X;x + tv;v)

since , if g is differentiable at t

g’(t) = u r n  [d(X;x + tv + Ov) — d(X;x + tv)J/O
o -~o÷

<j i m sup [d(X;y + Ov) - d(X ;y) J / o  =d °( X;x + tv;v)
y -~~ x + tv
0 -. 0+

Since the function (y, v) ‘— d°(X;y ;v) is obviously upper semicontinuous ,

we can associate with any e > 0, a neighborhood N(x0) of x0, M(v 0)

of v0 and a number h(x 0, v0 ) > 0 such thai when x N(x 0),

V ( M(v 0) and t~~~h(x0, v0), then

(2.8) d°(X;x + tv;v)<d°(X ;x
0
;v
0
) +c

The resul t then follows f rom this, combined with (2.7) and (2. 6). Q. E. D.

Let a multifunction S from X to R1 be given . We shall now

consider various consequences of the hypothesis that S(x) is contained

in T(X;x) for each x (this is (1. 3) in the case P(x) = X for each x;

the connection to Theorem 1 is made in Proposition 4 below). Besides

developing some machinery that will be needed In § 3, the relationships

between the various hypotheses made In the papers on invariant

trajectories cited above will be clari fied (see Corollary 1).

ProposItion 2. Let us assume thai S is upper se~nicont inuous and that

Yx E X, S(x) C T(X;x)

Then the f unction

-6-
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a(x , h) = sup d(X;x + hv)/h
v E S(x)

converges to 0 with h uniformly for x In compact subsets (h > 0).

Proof. Let K be a compact subset of X. Since S is upper semi-

continuous, the graph GK(S) of the restriction of 
S to K is compact.

Consequently , it can be covered by a finite number p of neighborhoods

N(x .) X M(v .) ,  where (x ., v .) E GK(S) and the neighborhoods N and

M have the pro perties of the preceding lemma. If we set h(K , e)

= mm h(x , ,  v1), we deduce that
1

Yx E K , Vv S(x) , Vh < h(K , e), d(X;x + hv)/h < e

So the proposition is proved . Q. E. D.

For any y~ R 1
, let ir(y) denote the set of closest points in X to y.

Proposition 3. If we assume thai

( 2 . 9 )  Yx E X, Vv E S(x), lim Inf d(X; x + hv) / h 0
h -. 0+

then

(2 .10)  Vy R1, Yx C 
~~~~~ Yv e S(x), (y  - x , v) ~~0

Conversely, if we assume that S is lower semicoritinuous property

(2. 10) Implies that S(x) C T(X;x) fo r afl x C X.

Remark. There are examples where (2.10) does not Imply ( 2 . 9 ) .

Proof. Suppose that (2. 10) I s  f a l s e .  There exist y c R 1
, x C tr (y) and

v C S(x) fl T(X;x) such that (y  - x, v) > 0 .  Let C be the complement

of the open ball of center y and radius d(X ;y) . Then
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d( X;x + tv) � d(C;x + tv) and , since (y  - x , v ) > 0 , d(C; x + tv) ~ bt + 0(t )

where 6 > 0. Hence u r n  inf d(X;x + Ov)/O ~ 6 > 0; this contradicts
0 -.0+

the fact that v C T(X;x). Conversely, let us prove that if S is

continuous, then (2.10) implies that S(x) C T(X;x).  By [s , p. 2 54 ] ,

we know that any element of N(X;x) can be written as a convex combina-

tion of elements p = lim s (y - z ) where s > 0 , y x andn n  n n nn -.~~~~
z rr(y ). Since x ~ X, we have fix - z < Ix - y II + f l y  - zn n n n n n

< 2  fi x - y II. Since S is lower semicontinuous , any v ~ S(x) is

the limit of some sequence of elements v ~ S(z ).  Son n
(p , v) = u r n  s ( y  - Z , V )  < 0 .  This implies that v N(X;x ) = T(X;x) . •

Corollary 1. Let us assume that

I) X Is a compact set.

(2. 11) ii) S is a continuous multifunction with non-empty

L compact values.

Then the following statements are equivalent

(a ) ~fx , S(x) C T(X;x)

(b) Yx C X , Vv C 5(x), ll rn lim Inf d(X;y + ov)/0 = 0
y-. x 0 — 0 +
y ( X

(c) lim sup d(X;x + hv)/h = 0
h- . 0 X E X

v S(x)

(d) Yx X, Yv S( x), lim d(X;x + hv)/ h = 0
h — 0+

(e) Yx € X, Vv C S(x), lim inf d(X;x + hv)/h 0
h — 0 +

( f )  Vy  R
1, Vx c 1T(y) , Yv t S(x), (y  - x,v) ~ 0

—8—



Prp.~~ That each condition implies the next , and that (f )  implies (a),

is either self-evident or a consequence of the preceding results . Q. E. D.

Remark 2 . 2 .  Conditions (a) and (b) are found in [ 5] ,  while (d) appears

in [4] ,  [ 7 ) ,  [ 9 ) ,  (e) in [14], [i s ] ,  [12] and (f)  in [3] ,  [7].

Let us consider now another multifunction P mapping X into X.

Proposition 4. ~~~ X be a compact subset of Rn .

Let us assume that S is a continuous mult i function with non-empty

compact values and that P is a closed multifunction satisfying (1. 2) .

If we assume

Vx X, S(x) C T( P(x);x)

then

lim sup d(G(P);(x , x + hv)) / h = 0
h - ..0+ X E X

v C S(x)

where d(G(P);( ,~~)) is the distance to the graph G(P) of P.

Proof. Let S : G( P) -. R21 be the continuous multifunct lon defined as

follows:

S(x , w) {o} x S(w)

Let (x , w) be a point in G(P) , and let (0 , v) belong to S(x , w).

We claim that

(2.12) lim inf d(G(P);(x,w + hv))/h = 0
h — 0+

To see this, note that since x belongs to P(x),

d(G( P);(x , w + hv)) ~ d( P(x);w + hv) .

—9-



Also , w c P(x) implies P(w) C P(x) , so that in turn

d(P(x);w + 1w) <d(P(w);w + hv)

However ,

u r n  in! d(P (w);w + hv)/h = 0

by (2.4), since v C S(w) C T(P(w);w). Thus (2.12) ensues. We now

apply Corollary (with X replaced by G(P) and S by S) and deduce

that condition (c) of that result holds . But that implies the desired

result , since (x , x) ~ G( P) . Q.E .D.

-10-



3. Proof of the Theorem

By Proposition 4, we know that our assumptions imply that

b(h) sup d(G(p);(x , x + hv))/ h
x i X
v C 5(x)

converges to 0 with h. We will use this fact instead of assumption

(1. 3) in the proof of the theorem .

We consider a decreasing sequence of partitions P(h ) of

[0 , TJ made of intervals ~~~~~~~ + l)h rn l where q is an Integer

and where

h
(3. 1)  T/h1 and are integers

We shall denote by T
m 

= qh (where q C N) any node of the partition

p(h ). We shall construct a sequence of piecewise linear functions

X
m 

on the partition p(h ) defined by

( 3 . 2 )  Vt C [ T  T + h ], x ( t ) x (T ) ÷ (t — T )v (Tm m m m m m  m m  m

whose derivative c it)  is a step function :

(3. 3) Vt C [ T  T + h [ c (t) = v (T  ).m ’ m rn ’ m m m

For that purpose , we define the map j : T —
~~ j ( T ) associating with

any node T C 1~(h ) the smallest index j = j (T ) such thatm rn m h .~~1
is an integer. [ Indeed , if I < k  < r n  is such tha t Is an integer ,

T k

then is also an integer If k < I ~ m ] .  We also define the
I

— 11—



map 4a : T
m ~~

T
m

) associating with any positive node •r
m C P(h )

the largest node ~~( T )  of the partition P(h .( )
) strictly smaller

than T ( i f  j = 0 , 4i(T ) = 0). We know that S(X) is compact (and

thus, contained in a ball of radius c - 1 > 0) .  Since S is uni formly

continuous , we can choose 6 such thatm

( 3 . 4 )  f ix  — y l l  < C b  implies that S(y) C S(x) + L B

wher e we set c = 2 m We denote by L the Lip schitz constant of P:

P(y) C P(x) + L J i x  - yl iB

We shall choose h small enough in order thatm
h < 6 2 (L + l)b(h ) < £r n r n’ m m

where

b(h) = sup d(G(P);(x , x + hv))/h
(x , v) C G (S)

Construction of X on [0 , h ] .  We consider v0 ~ S(x 0 ). By

definition of b(h ), there exist (y, z)  C G(P) such that

max( J I x 0 — y Ii , fix 0 + hm
vo 

- z If )  .~ 2b(h )h . Since P is Lipschitz,

then z P(y) C P(x0 ) + L11 x0 - y J I B C P(x 0
) + 2Lb(h )h B. Therefore ,

there exists u ~ P(x ) such that Ii z - u II < 2Lb(h )h and thus,
0 — m m

such that

11X
0

- U  

~~~~~~ < 2 ( L + l ) b ( h ) < c

If we define X on [0 , T
m

] by setting

u - x0x (0) = x0 
and v ( 0 ) = hm

— 12—



we obtain the properties

i) v (0) C S(x0) + £

) 
~ ii ) l i v ( 0 ) — v  Iim 0 m

L ill) x ( h ) = u C P(x0)

Construction of x on [T  T + h 1. Let us assume that we havem m m m

constructed x on [0 , r J sat isfying,  for any node a < T
m m m m

( i) v (a ) S(x (a )) + £

(3. 5) ii) i l v (a ) - V
m

(
~~

(C
m
)) II ~

iii) x (a + h ) C P(x (~ ))m m  rn m m

We shall construct x on the interval [T T + h ] satisfyingm m m  m

properties ( 3 . 5 )  where a is replaced by r . Let us set j ( T ) < m

and T = 4 ( T ) <~~ . Since the node T , = a- is also a node a-m m j m m
of the partition P(h

m
)
~ 

we know that, by (3. 5) (i),

(3 .6 )  v ( 7 )  C S(x (7 )) + £m ;  m j  m
7

Furthermore , lix (7 ) - x ( T ) l J  <j
m 

11~ ( t ) Il dt < c l i  T . l  < ch . .m m  m j  m m

We deduce from the uniform continuity of S that (see (3. 4))

(3. 7) S(X
m

(T
j

)) C S(X
m

(T
m
)) + £~B

Hence there exists w C S(x (7 )) such thatm m

(3 .8 )  l i v (i,) — w I l  < L . + Lm j  j m

— 13—



Now , by definition of b(h ), there exists ( y, z) G( P) such that

( 3 . 9 )  max( lix ( r  ) — y l i , lix (T ) + h w — z il ) < Zb(h )h
m m  m m  m — m m

Therefore , since P is L~pschitz , we deduce that

(3 .10)  z P(y) C P( x ( T ))  + L il x (-r ) — y il B

Then , the re exists u ~ P(x (i )) such thatm m

l i z - u l i  ~~ L H X (T ) - y l ’ < 2Lb(h )h

and thus , such that
x (i ) - u
m m 

~~~ < 2 (L+l)b(h )<€h — r n r nm

If we set

u - x
(3 .10 )  V ( T ) = h 

m

we thus have shown that v (T ) C w + £ B C S(x (T )) + £ B, that
* m m  m m m  m

li v ( i ) — v  (T ) l l  < li v ( T ) — w f i  + 1 1 w — v  (T ) i I  < t + Z e  < 2 c .m J  m m  — m j m m  j m
(since j < m )  and that u = x (i + h ) C P(~c (T  )) .  So x is

m m m m m  m

constructed on [x , X + 
~m 1 and satisfies properties (3. 5) with

a- = Tm m

Convergence of the sequence of approximate solutions. We shall prove

now that the sequence 
~~~~ 

Is totally bounded in the space ~(0 , T;R 1)

of bounded functions from [0 , T] into R 1 . Let be fixed. Since

S(X) is compact , it can be covered by p balls u~ + where

u. S(X) . Let us consider any interval I r k, T
k 

+ h k [ of the partition

— 14—



P(h ). There exists u k such thatk 
—

(3.11) il u k — 
~ m

(T
k~~ ~~C k

If m < k  k (t) = x (T ) is constant on this interval. Let m > k andm m k

t C [ T
k, 

T
k + hk [ . Then we shall pro ve that

ii X ( t)  - ~m (T
k ) 

~ 
4C~

Indeed , there exists a node T C P(h ) such that
m m

t C 

~~~m’ 
T

m 
+ h [  c [ T k, T k 

+ hk [ .  If m 
= Tk, then Xm (t) = k

m
( T

k
)
~

If T < T  then there exists j j (T  ) such that k < j < m  and

T
k 

k m  

<T
m

. If k < j ( i ), then there exists = j
2
(T ) such

that k < j 2 < J 1 and T
k 

<~~4i (T ) <
~~~

T
m

) < T . Proceeding in this  way,

we can eventually write T
k 

= 4,1( r )  where I < m - k. Hence , since

= V ( T ) and m (T k ) = v ( ~~~~(T )),  inequalIties ( 3 . 11) imply  that

(3.12) llx (t ) — 
~m

(T
k~~ 

< 2( c k + 
~k+l + + £ ) < 4 C k

So, we deduce from (3.11) and (3.12) that for any m , for any

t C [T k,T
k 

+ hk ], we have

(3.13) l ix (t ) — u~ Ii ~
This Implies that for any £ k~ 

each function km (t) is In a ball of

radius Sc whose center is a step function u such that u (t) =k rn m
j~ ~ ~~~ + h

k
[. Since there is a finite number (p j~~

) of such
k

ste p functions we have proved that the sequence of derivatives

is totally bounded.
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Consequent ly ,  we ca n extra :t a subsequence (s t i l l  denoted by)

X
m 

convergi ng un i formly  to a function v ~(0, T;R
1
). Since

x (t )  = x0 + f  ~c (T )d T , the sequence x converges uni formly  to
0 m

a Continuous function x such that

t
x ( t )  + 1’ v(t)dt

0

There fore , for any t * [0 , T] ,  x( t )  and v(t)  are respectively the

limits of sequences x (T ) and x (7 ) = v (T  ). So, by the upperm m m m  m m

semicontinuity of S, we deduce that

v(t)  C x ( T ) + B C S(X
m

( T
m
)) + B C S(x( t ) )  + LB

when m is large enough. Hence v( t )  = ~ (t)  C S(x( t ) ) .  Furthermore ,

x(t)  X. Finally, property (1 .2)  ( i i )  of F, combined with (3.  5) ( l i i) ,

implies that in any of our partitions , larger nodes are better than smaller

ones. We deduce from this that P(x(t) ) C P(x(s)) when t > S.

Thus we have proved the existence of a monotone trajectory. Q. E. D.

Remark 3. 1. The above proof remains valid when X is a compact

subset of a Banach space U , S is a continuous multifunction

from X into U with non-empty compact images , P a Lipschitz

multifunction from X into X satIsfying (1. 2) with non-empty compact

images and b(h) converges to 0 with h ; under these assumptions ,

there exists a regulated monotone invariant trajectory satisfying x(0) = x0

and c(0) = v0 C S(x0).

-16—



Remark 3. 2. We can generalize Theore m 1 to the case of t ime-dependent

systems , by assuming that the mu l t i func t io ns  S : [ 0 , T J ) < X • U and

P:  [0 , T] x X ~
. X are continuous , that  fo r any t, x -. l~ t, x) is Lipschitz and

sat isf ies  ( 1 . 2 ) ,  and that S(t , x) L T( P ( t , x) ;x)  for any t , x) e [ 0 , T j x X .  The above

proof then needs no modifications . By using techniques of Olech [13] ,

the case where t ~
-. S(t , x) is measurable for any x X and where

x .-. S(t , x) is continuous for almost all t can also be treated.

Remark 3. 3. We can consider also the case where X is no longer

compact , but closed. Let the intersection of X with the ball of center

x0 and radius d be denoted Xd, and associate with d the scalar

c(d ) = sup ii v ii + I
X C Xd
v € S(X)

it is easy to check that the approximate solutions X satisfying ( 3 . 5 )

remain in Xd whenever t .~ T(d) = d/c(d) . There fore , by replacing X

by Xd in the proof of Theorem 1, we obtain the existence of a monotone

traj ectory which remains In Xd when t < T(d).

Remark 3. 4. If the images S(x) are convex , we can replace assumption

(1. 3) by

(3.14) a(h) = sup inf d(G( P);(x , x + hv))/h — 0 as h ~ 0
X C X  v € S ( x )

We can prove that (3. 14) holds whenever we assume

(3.15) Yx C X, S(x) fl T( P(x);x) ~ 4 (cf. remark 1.1)

— 17—



REFERENCES

1. H. A. Antosiewicz and A. Cellina , Cont inuous  selections and

di f fe rential relat ions , J. Di f f .  Eq. 19 (1975) ,  38 6—398 .

2 . J . -P. Aubin , A. Cellina , and J . Nohel , Monotone traj ectories of

m ultivalued dynamical  systems , MRC Technical Report, Univer sity

of Wisconsin-Madison , 1976.

3. J . -M. Bony, Principe du maximum , Inegalite de Harnack et unicite

du probleme de Cauchy pour les operateurs elliptiques degeneres ,

Ann . Inst.  Fourier 19 (1 969 ) ,  2 77—304 .

4. H. Br~ zis , On a characterization of flow invariant sets, Comm. Pure

AppI . Math . 23 (1 97 0) ,  261— 2 63 .

5. F. H. Clarke , Generalized gradients and applications , Trans . Amer.

Math. Soc. 205 (1975), 247—262.

6. F. H. Clarke , Generalized gradients of Lipschitz functionals , MRC

Technical Report , University of Wisconsin-Madison , 1976.

7. M . G. Crandall , A generalization of Pea~o’s existence theorem and

flow Invariance , Proc . Amer. Math . Soc . 36 (1 97 2) ,  15 1-155 .

8. A. F. Filippov , On the existence of solutions of multiva lue d diffe rential

equations (In Russian) ,  Math.  Zametki. 10 (1971) ,  307—3 13.

9. P. Hartman , On invariant sets and on a theorem of Wazewski , Proc.

Amer. Math. Soc. 32 (1972 ) ,  ~ l 1 — 5 2 0 .

10. R . H. Mart in , Differential  equations on closed subsets of a Banach

space, Trans. Amer. Math. Soc. 179 (1973), 399-414.

—18—



11. R. H. Martin , Approximation and existence of solutions to ordinary

differential  equations in Banach spaces , Funkcialaj . Ekuacioj .  16

(1973j, 19S—2 1l.

12. M. Nagumo , Uber die Laga der Integralkurven gewohnlicher

Di fferentia lgleichungen , Proc. Phys . Math . Soc. Japan 24 (1942),

5 5 1 — 5 5 9.

1 3. C. Olech , Existence of solutions of nonconvex orientor fields ,

Boll. Unione Mat. Ital. 12 (1975), 189—197.

14. R. M. Redheffer, The theorems of Bony and Brezis on flow invariant

sets, Amer. Math . Monthly 79 (1972), 790—797.

1 5. J. A. Yorke, Invariance for ordinary differential equations, Math .

Syst. Theory 1 (1967), 353— 372.

-19-



UNCLASSIFIED
SECURITY CL A ISIFICAT 1ON OF THIS PAGE m,.,. D.a. lnt.v.d) 

___________________________________-
DCD1~DT IVWI IU~~U1’AT~f1~I R AGE READ *$8TRUCT~ON$

~~ , ~~~~~ .~ ~ZFORS cOMPI..ETZNQ FORM
a 1  IItia ~1Tr1 14: 2. GOVT ACCE$$ION NO. 5- RECIPIENT S CATA L OG wuu, ~~

/v ~. 7~~ - 17 ~~~ I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

‘ 

MONOTO NE INVA RIAN T SOLUTI~~~~~~~J~~ T~~~ ~~~~ma~~~~~~~~~~~no spedflc
-
~~~~ ~

.. reporting per od
j DIFFERENTIAL INCLUSIONS 7 PERFORMING ORG. REPORT NU~~1ER

1....~ UTHOR(.) S. CONTRACT OR GRANT NUUBER(.)

-‘1”rank H.;Clarke~~~~ J. P.7Aubin / . J .
~i D AGZ 9-7 5_ C . .0024 ‘

~

5- PERFORMING ORGAN IZATION NAM E AND ADDRESS 10. PRO~~RAM £LtMENT. PROJECT , TASK

Mathematics Research Center , University of ARIA S WORK UNIT NuNSERS

610 Walnut Street Wisconsin ,~‘ I (Applied Analysis)
Madison , Wisconsin 53706 ___________________________
II. CONTROLLING OF P I C E  NAM E AND ADDRESS I .-.~11EP~.RT DATE
U. S. Army Research Office ‘

~1/.~/Mar~~~~ 77
P .O.  Box 12211 YT ’ NUMSER OF PAGES

Research Triangle ParJç~ North Carolina 27709 19
‘
~t MONITORING Ovii~ c’ IANr S AOORES$(lt ~~Ht I I  h~~~ C~~i(7OStM4 Oh.. ) IS. SECURITY CLASS. (.1 UIl. r.porf )

UNCLA SSIFIED

/ .~~~~ IS.. DECLASSI FICATION/DOWNGRADING
SCHEDULE

~S- DISTRIWUTION STAT EMENT (of tAt. R.port)

Approved for public release; distribution unlimited .

I?. DISTRISUTION STATEMENT (of 9.. .b.Iroc I c.toc.d Sn Stock 20, II dSf l.r on t Ircu, R.porf)

IS. SUPPLEM ENTARY NOTES

*5. KEY WORDS (C.nt5~u. on ,•.., ~. .tdo If n.c..s~~~ id tdsntlfy b~ block .n b.r)

invariant trajectory differential inclusion
monotone trajectory generalized gradients
preference ordering generalized tangent cone
existence
10 A j~~~~ ACt  (Can(tflu. I. r r ~~ old . 99 nmoc y ~~4 Sdontt~~ b~ block n s S ~r)‘Let a ‘-j i ven set be endowed ,~vith a pre feren ce preorder ing, and consider the
problem of finding a solution to differential  inclusion ~- . — --- S(~c~ t ) ~
~“hich remains In the given set and evolves ~ o~,otonica11y with respect to the
preorder ing. -We-gi-v~ sufficient conditio~~~~F~the existence of such a trajectory,
couched ~n term s of a itotion of tangency developed by Clarke . No smoothness
or convexity is involved in the construction , which uses techniques of Fillppov. 

—

Do ~~ 1473 £01 TION OP I NOV 41 IS 0550* 111 UNCLASSIFIED 
* ~~ 

‘
- / ~~~ 

—

SECURITY CLASSIFICATION OF THIS PAGE (~~.n D~~. Rnl. ,.d)


